Spatiotemporal Bayesian Networks for Prediction of Vector-Borne Disease

> Prof. Peter Haddawy Faculty of ICT Mahidol University

Challenges

- Disease transmission can exhibit spatial and temporal heterogeneity, spatial autocorrelation, and seasonal variation
- Environmental factors can affect vector population and disease transmission in complex and non-linear ways
 - Temperature vector & parasite maturation,

biting rate

- Rainfall flushing effect
- Representing uncertainty

Mordecai et al, Ecology Letters 16:22-30, 2013

Bayesian Networks

- Graphical representation of a probability distribution
- Nodes random variables

. . .

- Edges direct influence, quantified by conditional probability
- Probabilistic semantics: Malaria independent of Month given Rain and Temp

Dynamic Bayesian Networks

- A way to represent Markov models: HMM's, Kalman filters, others
- Nodes organized into time slices
- States: Collections of nodes in a time slice and relations among them
- Transitions: Links between time slices

Tha Song Yang (ท่าสองยาง)

- 1,920 km² district in Tak province
- 66 villages near border with Myanmar
- Malaria is endemic
- Imported cases from Myanmar

Malaria Case Data

- Two years (2012 2013) of weekly clinically confirmed malaria case data from 66 villages
- 6,579 records with 12,800 total cases (PF, PV)
 - Cases: Min 0, Max 82, Mean 2.1

Environmental Data

Model Building: Time Lags

- Environmental variables effect different parts of the vector and parasite cycle
- Time lags determined using cross-correlation with pre-whitening + model fitting
 - Fit ARIMA model to independent variable X
 - Use to filter dependent variable Y
 - Calculate cross-correlation on residuals for X and filtered Y
- LST: 6 weeks
- Rainfall: 7 weeks
- NDVI: 8 weeks

Village Level Bayes Net Model

Linking Bayes Net to GIS

Linking Bayes Net to GIS

Prediction Accuracy (MAE)

Subsets	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	-	BN outperforms ARIMA, ARIMAX,
13 high	3.387	3.404	3.454	<mark>3.504</mark>	<mark>3.43</mark>	<mark>3.457</mark> 🗲		Linear Regression,
13 med	1.886	2.073	2.129	2.319	2.299	2.411	-	Regression
14 low	0.305	0.368	0.422	0.463	0.519	0.538	-	
All 66	1.415	1.501	1.557	1.644	1.657	1.729		

- High incidence {Min: 0, Max: 82, Ave: 7.43},
- Medium incidence {Min: 0, Max: 16, Ave: 1.91}
- Low incidence {Min: 0, Max: 3, Ave: 0.099}

Comparison with ARIMA

Subset	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
13 high	-3.8%	6.4%	9.3%	15.0%	20.5% *	26.9% *
13 med	-1.7%	-4.3%	-3.6%	-10.0%	-8.0%	-9.8%
14 low	-102.0% *	-145.3% *	-158.9% *	-178.9% *	-268.1% *	-304.5% *
All 66	-6.1%	-3.1%	-4.4%	-4.9%	-4.6%	-2.1%

Performance of Bayes net relative to ARIMA model.

* difference statistically significant (two-tailed T test p < 0.05).

Modeling Spatial Autocorrelation

- Individual village models an be linked together
- But models become too large and complex to build by hand

Solution: Knowledge-Based Model Construction

- Store model fragments in a library
- Represent as rules using probability logic
 ∀x P(Flies(x) | Bird(x)) = 0.9
- Automatically construct models tailored to data in GIS

Model Rules

If villages are close together, malaria may spread from one to another FOR(t:TIME)(x1:LOCATION)(x2:LOCATION) WHERE dist(x1,x2)<=3000 AND (x1 \neq x2) PARENT NeighborSum AT x1,t IS Cases AT x2,t CPT AUTO SUM; Cases has parents BorderDistance, previous week's Cases, MosquitoPop, and NearestSum FOR(t1:TIME) (t2:TIME) (x:LOCATION) WHERE t2=t1+1 PARENT Cases AT x,t2 IS BorderDistance AT x,t2 AND Cases AT x,t1 AND MosquitoPop AT x,t2 AND NearestSum AT x,t1

CPT (...);

Group of three neighboring villages

Model for entire problem space

Improvement from Autocorrelation Model

Village No.	Total Incidence	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
109	2672	17.8% *	15.6% *	11.8%	8.92%	3.34%	5.78%
201	412	1.18%	7.75%	8.52%	4.24%	7.66%	5.38%
208	274	0.88%	3.34%	11.3% *	9.77%	10.6%	10.4%
205	83	12.9% *	22.5% *	22.2% *	18.2%	12.7%	9.05%
410	79	5.03%	4.06%	6.84%	9.15%	11.0%	8.84%
107	51	4.02%	6.17% *	12.5%	16.2%	21.6% *	20.9%

* difference statistically significant (two-tailed T test p < 0.05)

Ongoing and Future Work

- Evaluate on larger area
- Integrate prediction and diagnosis
- Clustering to improve prediction accuracy
- Predictive modeling of dengue
 - Incorporation of breeding site data

Thank You